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Abstract Latent semantic analysis (LSA) is a statistical
technique for representing word meaning that has been
widely used for making semantic similarity judgments
between words, sentences, and documents. In order to
perform an LSA analysis, an LSA space is created in a two-
stage procedure, involving the construction of a word
frequency matrix and the dimensionality reduction of that
matrix through singular value decomposition (SVD). This
article presents LANSE, an SVD algorithm specifically
designed for LSA, which allows extremely large matrices to
be processed using off-the-shelf computer hardware.
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Introduction

Latent semantic analysis (LSA) is a statistical technique for
representing world knowledge (Deerwester, Dumais,
Furnas, Landauer, & Harshman, 1990; Landauer, Foltz, &
Laham, 1998). Since its discovery, LSA has been heavily
used in both the psychological and computational linguis-
tics communities. In psychological research, LSA has been
used to approximate vocabulary acquisition in children,
grade essays, match students with optimal texts for

learning, predict text coherence, make humanlike text
similarity judgments, take subject matter multiple-choice
tests with human performance, mirror lexical priming, and
understand student input during tutorial dialogue, among
many other things (Foltz, Kintsch, & Landauer, 1998:
Graesser, VanLehn, Rose, Jordan, & Harter, 2001;
Landauer & Dumais, 1997; Landauer et al., 1998;
Landauer, McNamara, Dennis, & Kintsch, 2007; Rehder
et al., 1998; Wolfe et al., 1998). In computational
linguistics, LSA has been used for text segmentation,
speech recognition, entailment detection, summarization,
and information retrieval—again, among many other things
(Bellegarda, 2000; Coccaro & Jurafsky, 1998; Deerwester
et al., 1990; Deng & Khudanpur, 2003; Dumais, 1991;
Foltz et al., 1998; Olney, 2007a; Olney & Cai, 2005a,
2005b). The duality of use across these communities
underlines the multiple viewpoints surrounding LSA. On
the one hand, LSA can be seen as a valuable tool for
imbuing computers with some notion of semantic related-
ness, and on the other, LSA can be seen as a computational
model of cognition with wide-ranging implications for
cognitive theory (Landauer et al., 2007).

The fact that LSA enjoys wide use in many communities
is a testament to the elegance of its model and the
simplicity of its use. Conceptually, LSA maps words onto
points in a space. Similar words tend to be nearby in this
space, while unrelated words are more distant. Since each
point in this space can be represented as a vector,
representations for documents can be created by summing
the vector representations of their constituent words. The
vector addition property has two important consequences.
First, any size collection of words can be compared with
any other size collection in the same way that two
individual words can be compared with each other. Second,
the representation of any collection of words has the same
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dimensionality as a single word in the collection; both are a
vector of fixed size.

Using this conceptual description as a background, we
now describe the process of LSA space creation in more
detail. At a high level, creating LSA spaces involves two
steps: construction of a term–document matrix and the
singular value decomposition of that matrix. A term–
document matrix is created by counting term (or word)
frequencies across a collection of documents. In the matrix,
the value at row i column j is the number of times term i
appeared in document j. Weighting schemes can further be
applied to this matrix to improve task performance
(Dumais, 1991). Several observations can be made about
the term–document matrix for natural languages such as
English. First, the matrix will necessarily be quite sparse,
since not all words occur in all documents. Thus, for any
given column of the matrix corresponding to a document,
many of its entries will be zero. Moreover, the matrix is
likely to be rectangular in shape, since there is no constraint
that the number of words should equal the number of
documents.

The second step of LSA is singular value decomposition
(SVD). SVD is a fundamental technique in linear algebra.
SVD is also an unsupervised method of dimensionality
reduction that is optimal in the least squares sense. To see
why, consider the definition of SVD:

A ¼ UΣVT ; ð1Þ
where U and V are orthonormal matrices and Σ = diag
(σ1,..., σn) and (σ1 ≥ ... ≥ σn ≥ 0). The σi are the singular
values of the matrix A.

A theorem by Eckart and Young (1936) establishes the
dimensionality reduction property of SVD. The theorem
states that a rank k approximation of the original rank n
matrix may be created by setting singular values k + 1 ≤ q ≤
n to zero. Moreover, the theorem states that this reduced
rank matrix Ak has minimal distance to A in terms of the
Frobenius norm:

Ak kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

s2
i

s
: ð2Þ

Thus, the theorem states that

A� Akk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
kþ1; . . . ; s

2
n

q
: ð3Þ

In other words, by choosing a smaller number of
dimensions, the resulting matrix Ak is an optimal approxima-
tion of the original matrix A in the least squares sense. For
this reason, SVD can be a useful tool for dimensionality
reduction and noise elimination; since the dimensions
retained account for most of the variance in the matrix, the
eliminated dimensions can be considered noise.

Equation 1 provides the definition of SVD but says
nothing about how to calculate it. Indeed, calculation of the
SVD is the most complex and challenging stage of creating
an LSA space. Although a great deal of research has
established multiple methods for calculating SVD (Bai,
Demmel, Dongarra, Ruhe, & van Der Vorst, 2000), LSA
research to date has focused on a single method: the
Lanczos algorithm with selective reorthogonalization
(LANSO; Martin & Berry, 2007). For reasons discussed
in detail below, traditional SVD algorithms such as
LANSO, despite their speed, require large amounts of
random access memory proportional to the size of the space
being created. The size limitation has restricted the kinds of
LSA spaces that have been made to date. For example,
bigram spaces potentially contain N2 rows, where N is the
number of word types in the original corpus. Such large
spaces require either a computer with a very large quantity
of random access memory or an alternative algorithm
without such a size limitation. In the remainder of this
article, we outline an alternative algorithm, called the
Lanczos algorithm, for semantic spaces (LANSE). Our
algorithm is specifically designed for large-scale LSA
spaces and has previously been used in spaces with millions
of bigram terms (Olney, 2007b, 2009), as well as in
traditional spaces from large collections like Wikipedia
(Willits, D’Mello, Duran, & Olney 2007).

The Lanczos algorithm

In this section, we outline the Lanczos algorithm, which is
the basis for both LANSO and LANSE. Before describing
the individual steps of the algorithm, it is worthwhile to
step back and reconsider the goal of the algorithm, which is
the SVD of the input matrix shown in Eq. 1. It is
straightforward to show a strong correspondence between
the SVD in Eq. 1 and a related eigendecomposition given in
Eq. 7.

A ¼ UΣVT ð4Þ

AAT ¼ UΣVT ðUΣVT ÞT ð5Þ

AAT ¼ UΣVTVΣUT ð6Þ

AAT ¼ UΣ2UT ð7Þ
These equations reveal two relationships between the

SVD of A and the eigendecomposition of AAT. First, the
singular values of A are the square roots of the eigenvalues
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of AAT, and second, the left singular vectors U of A are the
eigenvectors of AAT. Since LSA is typically concerned only
with the left singular vectors U (the term vectors), and not
with the right singular vectors V (the document vectors), no
further work is necessary. However, a similar result for V
could be obtained either by backsolving from the obtained
value of U or by beginning with ATA, rather than AAT. In this
way, the SVD of a matrix can be found by transforming the
SVD problem into an eigendecomposition of a square matrix.

Equation 7 provides an approach to calculating the SVD—
indeed, calculating the complete SVD–of a matrix. But what
if, as in LSA, one wishes to extract only the largest singular
values from a matrix? This is possible through an approach
known as triangularization. Triangularization transforms the
matrix AAT into another matrix T such that the complete
eigendecomposition of T is only the partial eigendecomposi-
tion of AAT. T is a tridiagonal matrix of the form:

T ¼

a1 b1

b1
. .
. . .

.

. .
. . .

.
bn�1

bn�1 an

2
66664

3
77775: ð8Þ

The Lanczos algorithm will tridiagonalize a matrix. Applying
the Lanczos algorithm to AAT yields

AAT ¼ Q1TQ
T
1 ; ð9Þ

where T is the tridiagonal matrix given in Eq. 8 and Q1 is an
orthogonal matrix related to T and AAT through the Lanczos
recursion (Stewart, 2001):

AATqj ¼ bj�1qj�1 þ ajqj þ bjqjþ1; ð10Þ
where aj ¼ qTj AA

Tqj and bj ¼k AATqj � ajqj � bj�1qj�1 k.
As defined in Eq. 10, each qj + 1 is calculated from the

previous qj and qj-1; likewise each αj and βj is calculated in
sequence from α1 and β1. Thus, each iteration of the
Lanczos algorithm to AAT will grow the set of qj by one
vector and the set of αj and βj by one value; that is,
matrices Q1 and T increase by one on each iteration.

Returning to Eqs. 7 and 9, it is now possible to partially
solve the eigendecomposition of AAT by solving the
eigendecomposition of T. To see that this is the case,
consider the eigendecomposition of T:

T ¼ Q2ΛQ
T
2 ; ð11Þ

where Λ is the eigenvalues of T and Q2 is the eigenvectors.
Then,

AAT ¼ Q1ðQ2ΛQ
T
2 ÞQT

1 ð12Þ

AAT ¼ Q1Q2ΛðQ1Q2ÞT ð13Þ

The eigenvalues and eigenvectors of T are preserved
because each Q is orthogonal and, therefore, a unitary
transformation. Therefore, from Eq. 7, we have Λ = Σ2, so
the singular values of A are the square roots of the
eigenvalues of AAT. Likewise, QQ2 are the eigenvectors of
AAT and the left singular vectors of A.

The problem with orthogonality

The Lanczos method as presented has a single significant
weakness: loss of orthogonality. Although the equations
presented above are sound, they require exact arithmetic
to function properly. Unfortunately, computer hardware
has finite precision. This means that instead of being
able to represent a number like :6 fully, the same number
might be represented only to, say, 15 decimal places, a
rounding error. In practice, this means that Eq. 10 will
become unstable and the columns of Q1 will lose
orthogonality, which, as was mentioned above, is vital
for maintaining the proper relationship between the
eigendecomposition of T and the eigendecomposition of
AAT. Interestingly, formal error analyses of the finite-
precision Lanczos algorithm show that loss of orthogo-
nality happens just as an eigenvalue begins to converge
(Paige, 1971; Parlett, 1998).

The traditional strategy for dealing with loss of orthog-
onality is to enforce it explicitly through reorthogonaliza-
tion. Intuitively, the way to enforce orthogonality is to keep
track of all the previous qj of Q1, such that a new qj + 1 can
be compared with them. If qj + 1 is not orthogonal to the
previous qj, it can be orthogonalized against them, using a
method such as the Gram–Schmidt process. Stewart (2001)
presents an excellent overview of the extensive literature on
reorthogonalization strategies.

Although reorthogonalization strategies produce nu-
merically correct results, they have two drawbacks. The
first drawback is the time it takes to reorthogonalize
against previous vectors. The most naive and wasteful
reorthogonalization strategy is to reorthogonalize at
every iteration, also known as full reorthogonalization.
However, because loss of orthogonality happens just as
an eigenvalue begins to converge, it is not necessary to
reorthogonalize at every step. Time-optimal strategies,
including LANSO (Parlett, 1998), attempt to predict or
estimate when reorthogonalization is necessary and,
therefore, avoid reorthogonalization when it is unwarrant-
ed, resulting in significant speed increases over full
reorthogonalization.

The second drawback to reorthogonalization, however, is
space. If each of the previous qj has to be kept in memory
for reorthogonalization, the total set can reach very large
sizes. Consider that each qj is the size of AA

T. Then the size
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of qj is the same as the number of terms in the LSA space.
As the number of terms grow, and as the number of
dimensions in the LSA space grows, so does the size of Q1.
Ultimately, Q1 overwhelms the amount of available
memory. Assuming available memory of 4 GB, 8-byte
(double-precision) floating point numbers, and an LSA
space of 300 dimensions, the number of terms is limited to
approximately 1.7 million. Note that this is an extremely
generous estimate because it does not include all of the
other items that must be held in memory to compute the
SVD, such as A, T, Q1, and Q2.

The space problem for reorthogonalization is a problem
for LANSO, the SVD algorithm commonly used by the
LSA community (Martin & Berry, 2007) via the BellCore
LSI tools (Bellegarda, 2000; Coccaro & Jurafsky, 1998;
Deng & Khudanpur, 2003; Foltz et al., 1998; Landauer &
Dumais, 1997; Landauer et al., 1998; Olney & Cai, 2005a,
2005b; Schütze, 1995). Indeed any reorthogonalization
scheme suffers from requiring large amounts of random
access memory. Large amounts of random access memory
are needed to store all of the orthogonal vectors and, so, to
ensure that new vectors are kept orthogonal to this existing
set.

Alternatives to reorthogonalization

The alternative to reorthogonalization has largely come
to be identified with the approach of Cullum and
Willoughby (1985/2002). Cullum and Willoughby pre-
sented an extensive treatment of Lanczos algorithms for
eigendecomposition, focusing, in particular, on the alter-
natives to the reorthogonalization problem described
above. The essence of the Cullum and Willoughby
approach is to allow the vectors to lose orthogonality
and deal with the slow convergence and degenerate
eigenvalues that result. In their analysis, Cullum and
Willoughby found that loss of orthogonality tends to
create multiple and spurious eigenvalues. Thus, the
degenerate eigenvalues cause slow convergence because,
rather than finding the correct and distinct eigenvalues, the
Lanczos recursion tends to find the same eigenvalues
repeatedly and, worse, eigenvalues that do not exist.

Cullum and Willoughby (1985/2002) outlined a
number of measures to combat this problem, a full
treatment of which is beyond the scope of this article.
Overall, the complexity of the Cullum and Willoughby
approach stems from its generalizability to many differ-
ent problems, including finding some, or all, of the
largest, middle, or smallest eigenvalues. Clearly, this is
quite different from the needs of the LSA community,

where often only the 300 largest eigenvalues are
required. We briefly describe two significant differences
between the Cullum and Willoughby approach and
LANSE. We will see that Cullum and Willoughby’s
arguments for these in the general case do not apply to
the LSA case, motivating our alternatives.

The first significant feature of the Cullum and
Willoughby (1985/2002) approach is that they advocated
using a matrix B of the form

B ¼ 0 A
AT 0

� �
ð14Þ

rather than AAT or ATA. If A is m by n, then B is (m + n) by
(m + n) and, so, is symmetric. The advantage to using B
over the AAT matrix is that the eigenvalues are no longer the
square roots of Λ, which could be a problem if the
eigenvalues were very close together. Using B instead of
AAT supports the generality that Cullum and Willoughby
wanted to provide for applications exclusively seeking the
largest, smallest, or intermediate eigenvalues.

The second significant feature of Cullum and Wil-
loughby (1985/2002) approach is their technique for
identifying spurious eigenvalues. Their method compares
the eigenvalues of T with eigenvalues from the matrix
formed by removing the first row and column of T, bT . The
test checks three conditions. First, if an eigenvalue occurs
more than once in T, it is a real eigenvalue that has
converged multiple times. Second, if the eigenvalue occurs
in both T and bT , the eigenvalue is spurious. Finally, and
most interestingly, if an eigenvalue of T is not present in bT ,
it is a true eigenvalue that will converge in time. Cullum
and Willoughby integrated this test for “good" eigenvalues
with the eigenvalue finding procedure itself, which uses a
bisection approach.

By combining these two features, Cullum and
Willoughby (1985/2002) were able to overcome the
disadvantages of no reorthogonalization and to capitalize
on its advantages. Reorthogonalization approaches (us-
ing B) store k*(m + n) vectors in memory, where k is
equal to the number of iterations/dimensions. However,
the Cullum and Willoughby approach without reorthogon-
alization stores 3*(m + n) vectors in memory, This
reduction in storage is possible because only two vectors
are required to calculate the next vector, using Lanczos
recursion if orthogonality is not required. Reduction in
storage has excellent consequences for large-scale LSA. In
LSA, the number of dimensions k is often 300. Therefore
the Cullum and Willoughby (1985/2002) method allows
roughly 100 times more documents to be processed in the
same amount of memory.
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For example, the Touchstone Applied Sciences Asso-
ciates (TASA) corpus (Landauer et al., 1998), a corpus
commonly used in LSA research, contains approximately 9
million trigrams, bigrams, and unigrams. Using the calcu-
lation above, a reorthogonalization approach would require
about 20 GB of RAM, whereas the Cullum and Willoughby
(1985/2002) method would require about 206 megabytes of
RAM. In other words, the Cullum and Willoughby method
can run supercomputer-size problems on an ordinary
desktop computer.

However, one remaining problem with the Cullum and
Willoughby (1985/2002) approach is that it is quite slow in
practice. This slowdown occurs because although only two
vectors are required to calculate the next vector, all the
previous vectors Q1 are needed to obtain the eigenvectors
of AAT, as in Eq. 13. Slowdown occurs because Q1 needs
either to be stored on disk or to be regenerated on demand.
Although disk operations are orders of magnitude slower
than processor operations, the better of these two options
depends on how long it takes to regenerate Q1. Under this
analysis, the Callum and Willoughby approach trades space
for time: Less random access memory is required, but the
result takes longer to obtain than with reorthogonalization
approaches.

There are several observations that can be made with
respect to the Cullum and Willoughby (1985/2002) ap-
proach and its suitability for LSA. The first is that use of
the B matrix for enhanced precision is unnecessary for
LSA, as has previously been demonstrated by Berry (1992).
Discarding the B matrix in favor of the AAT matrix has
several advantages. First, the matrix itself takes less space:
m + n vectors become m vectors. The size reduction affects
both the vectors in memory and the vectors saved to disk.
Second, AAT yields eigenvalues in half the number of
iterations as B, with corresponding computing time speedups
of half the time or better than B (Berry, 1992).

A second observation of Cullum and Willoughby (1985/
2002) approach is that its generality is not required for LSA.
Rather than needing singular values and vectors ranging from
the largest, to the smallest, and to those in between, LSA is
concerned only with the largest singular values, usually the
300 largest. Requiring only the 300 largest singular values is
an enormous simplification in several respects. First, since
the Lanczos algorithm finds the largest values first, one can
simply start it from the beginning. Second, when one tests
for convergence of eigenvalues, one can simply find them
all, using a robust algorithm like QR (Demmel, 1997;
Trefethen & Bau, 1997). Thus the more sophisticated
approach of Cullum and Willoughby is unnecessary.

Recent empirical work further lends support that these
observations are well grounded. The summary result is that

the tolerances for LSA are much lower than Cullum and
Willoughby (1985/2002) require because the distribution of
singular values in LSA spaces follows Zipf’s law (Ding,
2005). Using Ding’s published models for standard
document collections, including the Aeronautics collec-
tion from the Cranfield Institute of Technology
(CRAN), the Communications collection of the ACM
(CACM), the National Library of Medicine (MED), and
the Institute of Scientific Information (CISI), the 300th
singular value differs from the 299th by only the second
or third decimal place. The goodness of fit and similar
parameters of these models led Ding to conjecture that
singular values across all document collections obey a
similar Zipf law. This result suggests that using AAT

instead of B is justified because the singular values of
LSA spaces are well separated. Moreover, this result
suggests that a simple alternative test for convergence can
be used in favor of Cullum and Willoughby's test for
spurious values during bisection.

A quite simple test, which Cullum and Willoughby
(1985/2002) attributed to van Kats and van der Vorst (1976,
1977), is based on the interlacing theorem, which states that
between any two eigenvalues of a matrix Tj is an
eigenvalue of the matrix Tj-1. This suggests a simple test
of checking whether (to some specified tolerance) an
eigenvalue is in both Tj and Tj-1. If an eigenvalue is in
both, it has converged. Cullum and Willoughby rejected
this test because a fixed tolerance is not a solution for SVD
in the general case. For LSA, however, as was stated above,
we know from Ding’s (2005) work that a tolerance of a few
decimal places will be adequate for the 300th singular
value. A slightly more conservative and convenient
tolerance is to require single (4-byte) precision, which
roughly corresponds to seven decimal places.

We synthesize the previous discussion into the following
Lanczos algorithm for semantic spaces (LANSE), which is
particularly appropriate for large-scale LSA spaces. LANSE
proceeds as follows. Using the Lanczos method without
reorthogonalization on AAT, periodically check convergence
of the eigenvalues of T, using the van Kats and van der
Vorst (1976, 1977) test. Eq. 10 has several possible
algorithmic implementations, but we use the standard
algorithm (Bellegarda, 2000; Coccaro & Jurafsky, 1998;
Paige, 1972), which is concisely given by Bai et al. (2000).
Once the desired number of eigenvalues has been found,
stop the Lanczos algorithm and find the corresponding
eigenvectors of T, using inverse iteration. Then multiply
these eigenvectors by the vectors Q1 that were written to
disk during the Lanczos algorithm, or regenerate Q1 by
repeating the tridiagonalization of T. The resulting matrix is
U, the left singular vectors of A. The square roots of the
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eigenvalues are a, the singular values of A. The precise
LANSE algorithm is specified below.

Evaluation

To demonstrate the practical application of LANSE, we
apply it to the standard TASA corpus (Landauer et al.,
1998). Earlier versions of LANSE have created semantic
spaces for extremely large collections (Olney, 2007b, 2009;
Willits et al., 2007); however, using TASA allows us to
make comparisons with a traditional method that uses
reorthogonalization. The TASA corpus contains random
samples of text read during K-13 study, approximately 11
million words in all. After removing some punctuation, we
created a term–document matrix from the TASA corpus,
using log entropy weighting (Dumais, 1991). The matrix
had 129,477 rows corresponding to unique words, 38,962
columns corresponding to paragraph-sized documents, and
5,829,247 nonzero entries. This matrix was then input to
both LANSE and the ARPACK1 SVD algorithm (Lehoucq,
Sorensen, & Yang, 1998). ARPACK has good performance,

relative to other methods, on comparable problems
(Bergamaschi & Putti, 2002); has been widely used for
SVD applications; and is distributed in MATLAB. Both
LANSE and ARPACK algorithms were run until 300
singular values converged.

Our first analysis considers the accuracy of LANSE,
using ARPACK as a gold standard. Singular values for
both LANSE and ARPACK can be compared directly,
using correlation. The correlation between the respective
singular values was strong to seven decimal places,
r = .99999998586079, slightly lower than expected. Upon
further inspection, we realized that singular value 294 of
LANSE had not converged; that is, it was the sole missing
eigenvalue, relative to ARPACK. By inserting a similar hole
in ARPACK’s singular values (which correctly realigns
singular values 295–300), the correlation is stronger to nine
decimal places, r = .99999999917588. The implications of
such a small missing singular value are relatively minor,
according to Eq. 2. By the same argument, the high
correlation between the singular values of LANSE and
ARPACK indicates that LANSE found the correct singular
values to an extremely high degree of precision.

1 A direct comparisonwith the Cullum andWilloughby (1985/2002) code
was impractical because it is incomplete, unmaintained, and written in
legacy Fortan. Attempts to contact the authors have been unsuccessful.
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Our second analysis takes into consideration the left
singular vectors of LANSE and ARPACK. There are
multiple ways of considering this evaluation. One approach
would be to randomly select a large set of word pairs—say,
a thousand—compute the cosines between them in each
space, and compare the cosines. However. it is possible to
obtain a more global, mathematically sound result. Because
the SVD of a matrix has a unique solution, the left singular
vectors from a LANSE SVD and an ARPACK SVD of the
same matrix should be equivalent (excluding sign) in
column space. Therefore, the dot product between the
corresponding column vectors of the spaces should be 1,
just as the LSA cosine between a word and itself is 1.
However, this dot product comparison methodology is
based on exact arithmetic. Therefore we calculate two sets
of dot products. The first set contains a dot product between
each ARPACK vector and itself. This represents the upper
bound of agreement that could be expected between
ARPACK and LANSE in finite precision. The second set
contains the dot products between the nth vector of
ARPACK and the nth vector of LANSE. By comparing
the two sets of dot products, one can obtain a measure of
similarity across all possible combinations of terms in the
respective spaces. The maximum difference between these
two sets was .0000057, and the average difference was
.000000031. The relative closeness of the left singular
vectors indicates that LANSE has also found the left
singular vectors with high precision.

Aside from correctness of results, it is worthwhile to
consider the run-time characteristics of LANSE, as opposed
to other algorithms. As with any algorithm, the two most
important run-time factors are speed and memory con-
sumption. As was previously discussed, most reorthogon-
alization approaches attempt to maximize speed. LANSE
minimizes memory consumption in order to make large-
scale LSA possible. Thus, in some respects, this is a
noninformative comparison, because LANSE allows large-
scale LSA spaces that simply would not be possible with
typical reorthogonalization approaches. However, the com-
parison does serve to illustrate how LANSE performs. The
following comparisons took place on an Intel Duo 1.66-
Mhz computer with a 7,200-rpm hard disk.

When calculating the TASA space, ARPACK took
approximately 1.7 h to complete and used approximately
1,183 MB of RAM. The memory consumption of
ARPACK falls within its designed storage bounds given
by (m + n)k + k2 and 2(m + n)k + k2 (Lehoucq et al., 1998),
774 MB and 1,509 MB. However, since ARPACK was
called through the MATLAB clone Octave, a closer
analysis was made to uncover any potential inefficiencies
incurred by Octave. The profiling software Valgrind2 and a

manual inspection of the Octave source revealed that
approximately 210 MB of RAM were used in Octave
rather than ARPACK, bringing ARPACK’s true memory
consumption down to 1,002 MB.

Contrastingly, LANSE took approximately 10.1 h to
complete using approximately 444 MB of RAM, approx-
imately half the RAM. The difference in RAM consump-
tion between the two approaches is explainable as the
absence of Q1 in memory required to reorthogonalize
during tridiagonalization. Because the ARPACK implemen-
tation is using B to represent the matrix, instead of AAT, the
theoretical estimation of Q1’s size is 771 MB. Since
LANSE used only about 3 MB to store the last three
vectors of Q1, LANSE is much more memory efficient than
the ARPACK implementation.

This memory comparison between ARPACK and
LANSE is favorable, but it does not fully indicate the
differences in scale. Recall that while reorthogonalization
approaches require 300 such vectors for 300 dimensions,
LANSE requires only 3, a scaling factor of 100. Note that
these differences are for storage of the Q1 vectors alone.
However, for small collections, storage of A, T, and Q2

dominate, but Q1 quickly dominates for larger collections.
Consider the 300-dimension LSA space, mentioned previ-
ously, made from the 9 million trigrams, bigrams, and
unigrams in the TASA corpus. A reorthogonalization
approach would require 20 GB of 8-byte values just to
store Q1. Contrastingly, the minimal storage for Awould be
around 70 megabytes, with negligible storage required for T
and Q2. The original matrix A is so small, relative to Q1,
because A is extremely sparse: Only a fraction of all words
occur in each document. As the size of the corpus grows,
this sparsity is largely maintained.

Q1, on the other hand, is dense—that is, completely
filled with nonzero values. As the size of the corpus grows,
Q1 grows proportionally. In this case, that proportional
growth is 100 times greater for reorthogonalization
approaches than for LANSE.

The speed comparison between ARPACK and LANSE
is less favorable. In the case of TASA, LANSE takes 6
times as long to complete. However, the story is more
nuanced than this. The two most time-consuming oper-
ations for LANSE are tridiagonalizing and calculating
Q1Q2. Tridiagonalizing TASA takes only 25 min, and the
eigenvalues converge readily, as is shown in Fig. 1.

The second time-intensive step, calculating Q1Q2 takes
approximately 9.5 h to compute. The principal reason is that
the Q1 vectors were stored on disk during tridiagonalization;
this is where the memory savings of LANSE over
reorthogonalization approaches are realized. However, since
disk operations are roughly a million times slower than CPU
operations, reading Q1 back off disk is a time-consuming
process. However, it is possible to do so in a single pass—2 http://valgrind.org/.
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that is, by reading each vector of Q1 only once. Alternatively,
it is possible to regenerate each vector of Q1 when needed by
repeating the tridiagonalization process. Whether regenerat-
ing vectors is more time efficient than reading them from
disk depends on the speed of the processor being used.
When computing the same TASA space on the machine
mentioned previously, regeneration took 11.2 h to complete,
almost 2 h longer than the disk condition. However, when
implemented on an i7 processor at 1.6 GHZ, the same
computation was completed in 8 h, a 1.5-h improvement.
Therefore, the preferred method of computing Q1Q2 is
situation dependent, and LANSE provides both options.

In summary, the comparison of LANSE with ARPACK on
the TASA corpus is favorable. LANSE achieves comparable
accuracy to ARPACK for both singular values and singular
vectors. LANSE also performs its computations with about
half the memory consumption of ARPACK, and this
difference in memory consumption would be even greater
for larger spaces. Finally, LANSE executes about 6 times
more slowly than ARPACK, but this is by design, since
LANSE trades speed for low memory consumption.

Conclusion

LSA has been widely used in multiple research communi-
ties to investigate many types of phenomena, ranging from
vocabulary acquisition to information retrieval (Dumais,
1991; Landauer & Dumais, 1997). However, the questions
that can be asked are inherently limited by the computing
resources available to researchers. We have presented
LANSE as a solution to this problem. LANSE computes
the singular value decomposition of LSA spaces in roughly
1/100th of the memory required by traditional reorthogon-
alization approaches such as LANSO (Parlett, 1998).
LANSE achieves this goal by combining previous work

on the Lanczos algorithm without reorthogonalization
(Cullum & Willoughby 1985/2002; van Kats & van der
Vorst, 1976, 1977; Paige, 1972) with empirical work based
on LSA (Berry, 1992; Ding, 2005). By attempting to solve
SVD for LSA, rather than SVD in general, LANSE offers a
relatively simple means of implementing large-scale LSA.

The supercomputing community has been exploring
algorithms for computing large matrix decompositions over
the past several decades, focusing on parallel schemes using
shared memory and distributed memory (Berry, 1992;
Berry & Martin, 2006; Berry, Mezher, Philippe, & Sameh,
2006; Maschhoff & Sorensen, 1996). In shared memory
schemes, multiple processors have read/write access to a
large pool of common memory—for example, 64 GB.
Alternatively, in distributed memory schemes, the problem
is broken up into many similar parts, distributed over a
networked cluster of machines, and then reassembled when
the parts have been solved. In both cases, the algorithms
require large amounts of memory for reorthogonalization
but offer a greater speed of computation.

Although not currently parallelized, LANSE is highly
complimentary to these mainstream approaches. The two
most time-consuming operations for LANSE are tridiagon-
alizing and calculating Q1Q2, both of which are essentially
vector matrix multiplications that are highly parallelizable
on multicore desktops (Bai et al., 2000; Berry et al., 2006).
Likewise, the lower overhead of LANSE, by not requiring
reorthogonalization, could, in principle, streamline existing
parallel algorithms that operate over networks of work
stations (Berry & Martin, 2006).

With respect to current LSA research, the LANSE
algorithm has both practical and theoretical implications.
Practically, LANSE allows researchers without access to
supercomputers to create supercomputer-sized LSA spaces.
Even those with access to large shared memory super-
computers will be able to create larger LSA spaces than was
previously possible. Theoretically, LANSE opens a door to
new potential applications of LSA in psychological and
semantic research. Previously, limits on input matrix size
have restricted the kinds of phenomena that could be
investigated. By mitigating these size restrictions, LANSE
allows new questions to be asked, such as the effect of n-
grams, syntactic dependencies, and subsentence documents
on LSA spaces. By allowing larger questions to be asked,
LANSE increases the potential scope of LSA research.3
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Fig. 1 Convergence of eigenvalues in LANSE
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